8,182 research outputs found

    Condensed Multiwalled Carbon Nanotubes as Super Fibers

    Full text link
    The ultra-low intershell shear strength in carbon nanotubes (CNTs) has been the primary obstacle to applications of CNTs as mechanical reinforcements. In this paper we propose a new CNT-system composed of comprising of coaxial cylindrical shells of sp2-bonded carbons with condensed intershell spacings. Our atomistic calculations show that such condensed multiwalled carbon nanotubes (CMWNTs) can greatly enhance intershell shear strengths by several orders, and can simultaneously generate higher tensile strengths and moduli respectively than those of ordinary CNTs. It has further shown that CMWNTs can maintain thermally stable up to 2,000 K. By taking advantage of the primary enhancement mechanism of CMWNTs, a method of producing CMWNTs is therefore proposed tentatively. It is believed that CMWNTs featured with those properties can be taken as excellent candidates of super fibers for creating space elevators

    Comparison of experimental and Computational Fluid Dynamics (CFD) studies of slug flow in a vertical riser

    Get PDF
    This paper presents a comparison of the results obtained from experiments and CFD studies of slug flow in a vertical riser. A series of two experimental investigations were carried out on a 6 m vertical pipe with a 0.067 m internal diameter charged with an air–silicone oil mixture. For the first set of experiments, the riser was initially full of air, and then liquid and gas flows set to liquid and gas superficial velocities = 0.05 and 0.344 m/s, respectively, electrical capacitance tomography (ECT) and wire mesh sensor (WMS) transducers were employed. In the second one, the riser was initially full of (static) liquid, and then liquid and gas flows set to liquid and gas superficial velocities = 0.05 and 0.344 m/s, respectively, only ECT was used. A characterisation of the observed slug flow regimes was carried out. This includes the evaluation of the instantaneous distribution of the phases over the pipe cross-section, the Probability Density Function (PDF) of void fraction, time series of cross-sectional void fraction, Power Spectral Density (PSD), structure velocity of the Taylor bubble, lengths of the liquid slug and Taylor bubble and void fractions in the liquid slug and Taylor bubble. The simulation results were validated both qualitatively and quantitatively against experimental data. A reasonably good agreement was observed between the results of the experiment and CFD

    Catalysts based on Co-Birnessite and Co-Todorokite for the efficient production of hydrogen by ethanol steam reforming

    Full text link
    [EN] Two structured manganese oxides (Birnessite and Todorokite) containing Co have been studied in the steam reforming of ethanol. It has been found that both materials are active in the hydrogen production, exhibiting high values of conversion of ethanol and selectivities to hydrogen (100% and 70%, respectively). The best results have been obtained with the catalyst based on Todorokite material. Characterization by DRX, BET area, TPR and TEM has allowed to find that the excellent performance exhibited by this material could be attributed to the lower size of the Co metallic particles present in this sample (6 nm vs 12 nm in Birnessite). This lower size could be related to the especial microporous structure of Todorokite precursor, which could provide high-quality positions for the stabilization of the Co metal particles during calcination and reduction steps. Catalytic deactivation has also been considered. Deactivation was found higher for Todorokite-based catalyst, which presented the largest amount of deposited carbon (26.2 wt% for Co-TOD vs 10.6 wt% for Co-BIR). On the other hand, the degree of metal sintering was found similar in both catalysts. Therefore, the deactivation of the catalysts has been attributed primarily to the deposition of coke. The results presented here show that it is possible to prepare new catalysts based on manganese oxides with Birnessite and Todorokite structure and promoted with Co with high catalytic performance in the steam reforming of ethanol. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.The doctor Javier Francisco Da Costa Serra acknowledges the CSIC for granted the scholarship predoctoral-JAE-CSIC. Moreover, Electronic Microscopy Service of UPV for TEM images.Da Costa Serra, JF.; Chica, A. (2018). Catalysts based on Co-Birnessite and Co-Todorokite for the efficient production of hydrogen by ethanol steam reforming. International Journal of Hydrogen Energy. 43(35):16859-16865. https://doi.org/10.1016/j.ijhydene.2017.12.114S1685916865433

    Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3_{3}-based piezoceramics

    Get PDF
    Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO3_{3} solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V1^{-1} along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides

    Surfactant controlled zwitterionic cellulose nanofibril dispersions

    Get PDF
    Zwitterionic cellulose nanofibrils (ZCNF) with isoelectric point of 3.4 were obtained by grafting glycidyltrimethylammonium chloride onto TEMPO/NaBr/NaOCl-oxidised cellulose nanofibrils. ZCNF aqueous dispersions were characterized via transmission electron microscopy, rheology and small angle neutron scattering, revealing a fibril-bundle structure with pronounced aggregation at pH 7. Surfactants were successfully employed to tune the stability of the ZCNF dispersions. Upon addition of the anionic surfactant, sodium dodecyl sulfate, the ZCNF dispersion shows individualized fibrils due to electrostatic stabilization. On the contrary, upon addition of the cationic species dodecyltrimethylammonium bromide, the dispersion undergoes charge neutralization, leading to more pronounced flocculation

    The phases of deuterium at extreme densities

    Full text link
    We consider deuterium compressed to higher than atomic, but lower than nuclear densities. At such densities deuterium is a superconducting quantum liquid. Generically, two superconducting phases compete, a "ferromagnetic" and a "nematic" one. We provide a power counting argument suggesting that the dominant interactions in the deuteron liquid are perturbative (but screened) Coulomb interactions. At very high densities the ground state is determined by very small nuclear interaction effects that probably favor the ferromagnetic phase. At lower densities the symmetry of the theory is effectively enhanced to SU(3), and the quantum liquid enters a novel phase, neither ferromagnetic nor nematic. Our results can serve as a starting point for investigations of the phase dynamics of deuteron liquids, as well as exploration of the stability and dynamics of the rich variety of topological objects that may occur in phases of the deuteron quantum liquid, which range from Alice strings to spin skyrmions to Z_2 vortices.Comment: 9 pages, 6 figures; v2: fixed typo
    corecore